The New England Journal of Medicine

©Copyright, 1986, by the Massachusetts Medical Society

Volume 314

5, 1986

tance s as a of the

ducaohysimonioublic

n, we

e and al hu-

ut re-

PH.D.

.H.A.

1 Consti-

titute of

ss, 2101

re Walter

drosian,

A. Der-

n, M.D.,

A. Platt.

even A.

Wikler,

D. (study

'ed 1980;

rk: Basic

National

hington,

)s. Balti-

: 89:835-

address-

fits differ

s: a com-

Econ Ing

GD. The

not-for-

ealth care

olds in the

-70-83-4

5; 63:476-

ngl J Med

cal profile.

ity Press,

he role of

an Public

1 Founda

JUNE 12, 1986

Number 24

HYPONATREMIA, CONVULSIONS, RESPIRATORY ARREST, AND PERMANENT BRAIN DAMAGE AFTER ELECTIVE SURGERY IN HEALTHY WOMEN

ALLEN I. ARIEFF, M.D.

Abstract Severe hyponatremia developed after elective surgery in 15 previously healthy women who subsequently either died or had permanent brain damage. The mean age was 41 years (range, 22 to 66), and the preoperative serum sodium level was 138 mmol per liter. All the patients recovered from anesthesia, but about 49 hours after surgery, when the average plasma sodium level was 108 mmol per liter, grand mal seizures, followed by respiratory arrest requiring intubation, developed in all 15. At that time, the urinary sodium level and the osmolality averaged 68 mmol per liter and 501 mOsm per kilogram, suggesting inappropriate secretion of antidiuretic hormone. In 10 of 15 patients, an acute cerebral vascular disorder was suspected, leading to a delay in treatment and multiple diagnostic

studies, including CT scanning, cerebral angiography, and open-brain biopsies. The net postoperative fluid retention was 7.5 liters, and when correction of the serum sodium level was initiated, the rate of correction was less than 0.7 mmol per liter per hour. Histologic studies of the brain in five patients were not diagnostic, and no patient had any evidence of central pontine myelinolysis on the basis of autopsy, brain biopsy, or CT scanning. Seven patients recovered from coma after the serum sodium level was increased to 131 mmol per liter, but coma recurred two to six days later and ended in either death or a persistent vegetative state. Overall, 27 percent of the patients died, 13 percent had limb paralysis, and 60 percent were left in a persistent vegetative state. (N Engl J Med 1986; 314:1529-35.)

found that I percent of hospitalized patients1 and 4.4

percent of postoperative patients16 had hyponatremia

(serum sodium level below 130 mM), but none of the

patients in their series had brain damage. However,

hyponatremia was associated with a 60-fold increase in mortality, which was usually due to associated

medical conditions. In the present study, my col-

leagues and I sought to avoid the influence of comorbid events on morbidity and mortality by restrict-

ing study subjects to patients who were essentially

healthy and in whom hyponatremia developed in a

METHODS

Over a period of 10 years, I was asked to see in consultation 15

hospital setting.

HYPONATREMIA is probably the most common of all electrolyte disorders seen in a general hospital population. 1-5 Acute symptomatic hyponatremia has been reported in a wide variety of clinical circumstances, including that of the postoperative period. 1-19 However, permanent brain damage associated with hyponatremia appears to be infrequent, with less than a dozen cases reported. 2,9-13 Some investigators believe that other medical conditions associated with hyponatremia, rather than hyponatremia itself, are primarily responsible for brain damage. 3,7,8,14,15 Still others believe that "chronic" hyponatremia (serum sodium level below 120 mmol per liter for over 36 hours) does not generally result in cerebral damage. 3,7,8 Because of these conflicting ideas, there has developed a dichotomy of opinion about the therapy of symptomatic hyponatremia. 5-8

It is unclear whether brain damage from hyponatremia is actually rare or merely underreported. In addition, many believe that the morbidity and mortality associated with hyponatremia are often due to associated medical conditions, such as heart, lung, liver, brain, or kidney disease. ^{14,15} Anderson and associates

patients with severe symptomatic hyponatremia who were generally healthy women who had undergone elective surgery. None had any serious underlying medical conditions before hyponatremia developed, all had had normal preoperative serum sodium levels, and all recovered from general anesthesia to the point of being able to walk, converse, and eat.

The 15 patients were seen at 15 medical centers and were fol-

lowed for at least two years after their surgery, with a mean followup of four to six years. All the patients were ambulatory women who were either gainfully employed workers or active homemakers before their elective surgery. Only one (Patient 12) had any disability that may have interfered with an active life (coronary artery disease). In all cases, the patients were seen after the onset of seizures and coma and the diagnosis of hyponatremia. In no instance was therapy of the hyponatremia determined by me. Data were obtained both from the patient records for the period before seizure activity and from observation of the patients after the onset of seizures. The patients' age range was 22 to 66 years (mean ±SE,

From the Department of Medicine, the Veterans Administration Medical Center and University of California, San Francisco. Address reprint requests to Dr. Arieff at the Veterans Administration Medical Center (111J), 4150 Clement St., San Francisco, CA 94121.

St., San Francisco, CA 94121.
Supported by the Research Service of the Veterans Administration.
Presented in part at the 17th Annual Meeting of the American Society of Nephrology, December 1984, Washington, D.C.

AS - INQ

306-121a-001

cretio

at in 1

aspons

After shed :

egun 1

154 m

urosen

ithou

ours.

fter h

mol i

coma

atient

fter fo

tgain

nental

with v

one (1

ial pa

partial

valk \

begun

ures,

10 a l

mpa

The

n who

mM o

hat h

ion.6

mia d

n the

with 5

who 1

follow

for CL

Recur

Sev

cours

ients

such

eleva

hours

point

after

patie

teriz

naus

lowe

back

the s

in a

the o

after

a ph

41±4). Associated medical conditions included cholecystitis, vertebral fractures, migraine, pregnancy, diabetes insipidus, epistaxis, coronary artery disease, pelvic inflammatory disease, hypertension (two patients), and leiomyomatous disease of the uterus (five patients). The amount of total body water was calculated on the basis of sex, age, and weight. ¹⁷ Data are expressed as means ±SE. Significance was determined with use of the unpaired t-test.

RESULTS

The mean weight of the 15 women was 56.8 ± 2.6 kg. and the initial plasma sodium level before surgery was 138±1 mmol per liter. The operations these women had undergone included placement of a Stryker frame, cholecystectomy, uterine dilation and curettage, repair of a torn shoulder ligament, cosmetic dental surgery (two patients), ligation of a bleeding nasal septum, transluminal dilation of the right coronary artery, exploratory laparotomy, and abdominal hysterectomy (five patients). Anesthesia included intravenous meperidine hydrochloride (Demerol) or morphine in two patients, local anesthesia (tetracaine [Pontocaine], cocaine plus lidocaine [Xylocaine], and lidocaine plus diazepam) in three patients, enflurane (Ethrane) in six patients, and halothane in three patients. One woman did not actually undergo surgery, but was admitted to the hospital with an allergic skin reaction (to ampicillin). Her subsequent clinical course was similar to that of the other 14 patients, as was the outcome, so she has been included.

Postoperative Symptoms

All the patients awoke from general anesthesia, and all were able to walk, communicate, eat, and void spontaneously within eight hours of surgery. At 49±7 hours after surgery, grand mal seizures developed in all the patients. These seizures were generalized, but precise details of the seizure activity are not available. Within 60 minutes after the onset of seizures, respiratory arrest developed in all the patients. All were intubated but had hypoxic-anoxic intervals of various durations. At the time of seizure activity, the plasma sodium concentration was 108±2 mmol per liter. The symptoms that occurred before the seizures included nausea, headache, and emesis in all patients. Half were incontinent, and 30 to 50 percent were hostile (four patients), disoriented (four), depressed (four), or hallucinating (seven) - symptoms that resulted in psychiatric consultation in the cases of five patients. In 8 of 15 patients, the onset of seizures and respiratory arrest was explosive in nature. The patients were lying in bed, awake, with only minor symptoms. Within a period of less than 10 minutes, the eight patients went from a state in which they were alert and talking, to a grand mal seizure that was soon followed by respiratory arrest. Within two hours after the grand mal seizures, all the patients were evaluated neurologically by either a neurologist (36 percent) or an internist (64 percent). Neurologic symptoms that were observed after respiratory arrest and intubation included unequal pupils (12 patients); positive Babinski's sign

(13), which was unilateral in 2 of 13 patients; hemiparesis (4); fixed dilated pupils (10); bilateral clonus of the knees and ankles (12), lethargy (9), and grand mal seizures (15).

Initial Diagnosis

After the seizures and respiratory arrest, hyponatremia was initially suspected as a cause in only 33 percent of the cases. In the other 67 percent, the initial diagnosis was either acute stroke, sagittal sinus thrombosis, arteriovenous malformation, herpes encephalitis, migraine with vascular occlusion, rupture of cerebral aneurysm, skull fracture with subdural hematoma, or coma of unknown origin. None of the aforementioned diagnoses were subsequently confirmed. The fact that hyponatremia was not usually suspected as the cause of coma led to extensive consultation. There were a total of 42 consultants for 15 patients (internal medicine, 8; neurology, 10; nephrology, 6; neurosurgery, 6; endocrinology, 4; pulmonary, 2; ophthalmology, 1; and psychiatry, 5). Largely because of the consultations and subsequent diagnostic studies, there was an average delay of 16±7 hours before therapy for the hyponatremia was begun. This interval was spent largely in diagnostic studies. Every patient had at least one CAT (computed axial tomographic) scan of the head. In addition, most patients (67 percent) had electroencephalography, 47 percent had carotid and vertebral angiography, and 60 percent had diagnostic lumbar punctures. These diagnostic studies were performed despite the fact that in 80 percent of the cases the serum sodium concentration was known. This suggests that many of the managing and consulting physicians were not aware that hyponatremia could lead to the observed symptoms. Two patients had open-brain biopsy for suspected herpes encephalitis.

Postoperative Fluid Balance

The total body water, calculated on the basis of the age, sex, and weight of the 15 patients, was 28.2±1.3 liters.17 A review of postoperative intake and output records in the 11 patients for whom the information was available revealed that from the completion of surgery to the time of grand mal seizure activity, the average intake was 8.8±0.7 liters of 285 mM glucose (containing less than 5 mmol of sodium chloride per liter). The mean urinary output was 1.3±0.4 liters. At a time when the mean serum sodium concentration was 108 mmol per liter, the urine osmolality was 501±53 mOsm per kilogram and the urinary sodium level was 68 ± 10 mmol per liter. The net fluid balance was thus 7.5 liters. A routine calculation shows that this degree of fluid retention would theoretically lower the serum sodium level to 109 mmol per liter, which is very close to the actual value observed. The inappropriately elevated urinary sodium and osmolality in the presence of water intoxication and hyponatremia are virtually diagnostic of the syndrome of inappropriate

nts; hemiral clonus ind grand

ine 12, 1986

hyponaonly 33 t, the inital sinus rpes en-, rupture subdural None of ntly cont usually e consults for 15 nephrollmonary, rgely beiagnostic =7 hours un. This s. Every al tomopatients percent 60 perdiagnosnat in 80 ntration anaging at hypo-

is of the .8.2±1.3 d output rmation etion of vity, the glucose ride per iters. At ntration lity was sodium balance ows that lly lower which is inapproty in the emia are ropriate

ns. Two

1 herpes

_{scre}tion of antidiuretic hormone, ¹⁻³ a condition preson in virtually all patients after surgery. ¹⁶

gesponse to Therapy

After the diagnosis of hyponatremia was estabished as a possible cause of the seizures, therapy was gun with various concentrations of sodium chloride 154 mM, 515 mM, or 856 mM), often combined with irosemide. Four of the 15 patients died, three of them ithout regaining consciousness and in less than 24 hours. The other patient who died awoke 24 hours fter her serum sodium level had been elevated to 130 mol per liter. Thirty-six hours later, she lapsed into coma and died two days later. Among the 11 other atients, 9 remained in a persistent vegetative state²⁰ fer follow-up for two to six years. Two eventually rgained consciousness and recovered enough of their mental faculties to lead reasonably normal lives, but both were left with permanent neurologic disability. One (Patient 3) had permanent double vision and parfal paralysis of one leg. The other (Patient 12) had nartial paralysis of one arm and one leg. Both can walk with a cane. In these two patients, therapy was begun within one hour of the initial grand mal seitures, and the serum sodium concentration increased 10 a level above 130 mmol per liter in 22 hours, as compared with 49 hours for the others.

The overall rate of correction among the 12 patients in whom the serum sodium level was elevated to 128 mM or higher was 0.5 mmol per liter per hour, a rate that has been defined as constituting "slow" correction. All had permanent brain damage. Hyponatremia developed in the four who died much faster than in the group as a whole: in 28±4 hours as compared with 57±8 in the other 11 (P<0.05). The nine patients who remained in a persistent vegetative state after follow-up for two to six years are all institutionalized for custodial care.

Recurrent Coma

Seven of the 15 patients had an unusual clinical ourse, which is shown in Figure 1. These seven patients were treated with hypertonic sodium chloride in such a way that their serum sodium concentration was elevated from 105 ± 2 to 131 ± 1 mmol per-liter in 41 ± 7 hours. At that time, all regained consciousness to the point of being able to walk, eat, and talk. However, after a mean lucid interval of 58±8 hours, these seven patients then had a progressive clinical course characterized by decreased alertness, increasing headache, nausea, and progressive obtundation. This was followed by recurrence of grand mal seizures and a lapse back into coma. These clinical events occurred while the serum sodium level was above 128 mmol per liter in all cases. One patient died after two days, and the other six remained in a persistent vegetative state after follow-up intervals of at least two years. Such a phenomenon has not previously been well described in association with hyponatremia, 9,18 but the clinical course seems similar to that of postanoxic encephalopathy. 19-21

Pathological Findings

Three patients died and autopsies were performed; open-brain biopsy was performed in two patients for suspected herpes encephalitis. The three patients who died in less than 24 hours all had evidence of herniation of the brain stem into the foramen magnum. In one of them (Patient 14), a CT scan before death had demonstrated edema of the brain stem. In addition, these three patients had obliteration of sulci and evidence of coning. Pathologically, the two patients who survived for several days both had evidence of necrosis of the cerebral cortex (cortical gray matter), but they had been treated with mechanical ventilation for the entire period. In all five patients, the white matter was normal, with no evidence of central pontine myelinolysis. None had evidence of encephalitis, stroke, tumor, or bleeding.

Contributory Factors

Eight of the 15 patients were not taking any drugs that might have contributed to the hyponatremia. Three were taking thiazide diuretics, which may have been a factor in the rapid onset of hyponatremia. ^{10,16} Another two patients were taking phenothiazines, which may have contributed to water retention. One patient had idiopathic diabetes insipidus and was given both desmopressin acetate (DDAVP) and aqueous vasopressin, which probably contributed to her water retention. One patient was taking prednisone, and two were taking propranolol. After surgery, 12 patients received parenteral narcotics (meperidine, morphine, or hydromorphone) — agents that may also result in water retention. ²²⁻²⁴ Thirteen patients were given at

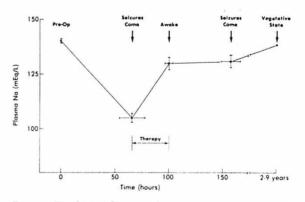


Figure 1. The Clinical Course in Seven Women Who Had Postoperative Hyponatremia with Grand Mal Seizures and Coma. When the serum sodium level was increased from 105 to 131 mmol per liter in 41 hours, all the patients awoke. However, after a mean period of 58 hours, grand mal seizures and recurrent coma developed in all seven patients, despite the fact that the serum sodium level was above 128 mmol per liter in all cases. One patient died, and the others have remained in a vegetative state. Bars denote SE.

least 6 liters of hypotonic fluid (usually 285 mM glucose) in the first 39 postoperative hours, with urinary output of less than 650 ml per 24 hours. A routine measurement of serum sodium was not ordered for the first two postoperative days in 87 percent of the patients. Two patients (Patients 7 and 15) did not have excessive fluid intake but had received other medications (desmopressin acetate, vasopressin, or thiazides) that probably contributed to their hyponatremia.

Two patients had clinical evidence of volume contraction (postural hypotension or tachycardia) that was secondary either to excessive emesis (Patient 4) or severe epistaxis (Patient 10). One patient (Patient 13) was receiving an infusion of ACTH in 285 mM glucose in water, and another (Patient 4) received oxytocin after gynecologic surgery. Both agents have been reported to increase water retention. 25,26

DISCUSSION

These data show that in generally healthy women undergoing elective surgery, severe symptomatic hyponatremia can develop in two days or less. The causes of the abrupt fall in the serum sodium level are probably multiple, but the most important one appears to be excessive postoperative administration of hypotonic fluid (87 percent of the patients). However, excessive administration of free water alone does not generally result in hyponatremia. Barlow and De Wardener²⁷ have demonstrated that normal subjects can ingest up to 15 liters of water a day with little or no change in the serum sodium level. In subjects with hyponatremia, both total body water and sodium levels can be high, low, or normal. 9-13,23,28 In most clinical situations, hyponatremia is associated with water retention and elevated plasma levels of antidiuretic hormone. Chung and associates 16 found that among 48 postoperative patients with hyponatremia, most had elevated plasma levels of vasopressin (antidiuretic hormone). Volume contraction is a major stimulus to the release of antidiuretic hormone, 1,4,16 and most postoperative patients have a decreased extracellular volume, which is usually independent of blood loss.²⁹ Thus, it is not surprising that several investigators have shown that almost all postoperative patients have elevated plasma levels of antidiuretic hormone. 16,30-33 Postoperative hyponatremia is actually quite common and may affect more than 4 percent of all subjects who have undergone surgery. 9,14-16 However, it is rarely symptomatic; the plasma sodium level usually does not fall below 120 mmol per liter, and neurologic morbidity appears to be uncommon.14-16

There have been several reports of postoperative hyponatremia accompanied by coma and seizures. Most have appeared in the older surgical literature. 9,18,22,26,34,35 Despite the presence of a serum sodium concentration below 115 mmol per liter with symptoms, neurologic morbidity and mortality were very infrequent. Since many of the aforementioned patients were in generally good health and were undergoing elective surgical procedures, the absence of

serious associated medical illness may have been a major factor in the low morbidity and mortality. Sex. eral reported cases of hyponatremia with associated brain damage have occurred in patients with other comporting conditions. 2,7,8,10-13,36-39 However, one associated with sympation may be important.

With few exceptions, most patients who have had symptomatic hyponatremia with a sodium level below 120 mmol per liter but have not had permanent neuro. logic damage have been men,2,5,9-13,22 whereas those who have died or had permanent brain damage have been women. ^{2,4,8-13,18,37-39} If the number of previously described patients who have had well-documented postoperative symptomatic hyponatremia (serum so. dium level below 120 mmol per liter) in the absence of associated medical conditions known to be frequently associated with central nervous system damage^{2,9,18,22,34,35} is added to the 15 patients in the present report, the total number of such patients is 57 Eighty-eight percent were women. Furthermore, all 30 of the 57 patients who either died or had permanent brain damage were women. The mean serum sodium level was not different in the men (107±4 mmol per liter) from that in the women (109±6).

The reasons for such a female predilection to brain damage from hyponatremia are not clear. Adaptation of the brain to hyponatremia involves both an efflux of osmotically active cation (primarily potassium) and a gain of water.2,4 Both processes act to lower the intracellular osmolality of the brain, and the rapidity of this process may ultimately help to determine survival.2 Although the mechanism by which cation is lost from brain cells in hyponatremia has not been well studied, it probably has both active (related to a sodium-potassium pump)40 and passive (ouabaininsensitive) components.41 There is a potassium-conductive pathway found in several cell types (e.g., lymphocytes and Ehrlich cells) that results in a loss of cell potassium when cells are placed in a hypo-osmotic medium. 40-42 In hypo-osmolar states, the passive component of potassium influx is also reduced,41 which would tend to increase the loss of potassium from brain cells. However, if the active component (probably efflux mediated by sodium-potassium ATPase were to be somehow inhibited, this would impair the loss of potassium from the brain in hyponatremia, leading to increased brain swelling, with a higher morbidity. It may be that the sodium-potassium ATPase system in the brain is less efficient at extruding potassium in women than in men. This may be related to the fact that the action of sodium-potassium ATPase can be inhibited by some female sex hormones. It has recently been shown that progesterone and certain of its derivatives can inhibit this enzyme in several tissues.43 In addition, both sexual and racial differences in the amount and the activity of sodium-potassium ATPase in red cells have been demonstrated.44 Such effects may be present in the brain as well.

The 15 patients described here do not representations known percentage of the total number of operations

deed a de with sym sequelae. It has l , benign dangerou been sug curs, it is tions. Bra patients \ Also, we l patients arrhosis brain dar rients wit dium leve an increa hospitaliz However most of healthy. under 35 pulmona any imp that coes in the out in anima that hypo to 115 m sult in : these par serum so to seven tory arre

> There apy for the was init than 0.7 defined a been sev such slo recently rapid" sometim olysis, 7,1 tain oris alcoholi tial stud rapid tre tral por probabl

> > tremia

found w

The rest

These st

tention

for the

patients.

s who have had dium level below ermanent neuro-22 whereas those in damage have ber of previously vell-documented emia (serum so-) in the absence nown to be freous system dam. ents in the presh patients is 57. rthermore, all 30 had permanent in serum sodium 07±4 mmol per 6).

ilection to brain lear. Adaptation both an efflux of otassium) and a lower the intrathe rapidity of determine surwhich cation is ia has not been ive (related to a ssive (ouabainpotassium-contypes (e.g., lyms in a loss of cell a hypo-osmotic the passive comeduced,41 which potassium from mponent (probassium ATPasel vould impair the i hyponatremia, th a higher mortassium ATPase extruding potasav be related to tassium ATPase iormones. It has e and certain of ne in several tisracial differences dium-potassium nstrated.44 Such s well.

not represent a er of operations,

nay have been and there are no obvious reasons that all were womalt mortality. See, although the literature suggests that there is int with associated although the literature suggests that there is into with other co. ever, one associ. equelae.

It has been suggested that hyponatremia by itself is benign condition and that rapid therapy is more langerous than the condition itself. 37,45 It has also wen suggested that when neurologic morbidity ocurs, it is often related to co-morbid medical condi-10011s. Brain damage has often been observed among patients with acute water intoxication. 2,18,26,34,36,38,39 also, we have previously shown that certain groups of atients — those with alcoholism, cachexia, or hepatic arrhosis — are much more likely to have permanent brain damage with hyponatremia than are other pajents with similar serum sodium levels.4 A serum sofium level below 130 mmol per liter is associated with in increase of 60-fold or more in the mortality of hospitalized nonsurgical or surgical patients. 1,14,15 However, despite some associated medical conditions, most of the women in this study were young and healthy. Ten were under 50 years of age and eight under 35, none were alcoholic, all had normal hepatic, pulmonary, and renal function, and only three had inv important medical illness. Thus, it is unlikely hat coexisting medical conditions played any part n the outcome in these patients. Furthermore, studies in animals, both in our laboratory and others, show hat hyponatremia itself (a serum sodium level of 100 to 115 mmol per liter for at least two days) can result in all the clinical manifestations observed in these patients. Studies in dogs, rats, and rabbits with serum sodium levels below 120 mmol per liter for two to seven days show that lethargy, seizures, respiratory arrest, limb paralysis, anorexia, clonus, and profound weakness may develop in these animals.2,46-49 The resultant mortality is from 58 to 100 percent. These studies in animals strongly support the contention that hyponatremia alone was responsible for the observed morbidity and mortality in our patients.

There was an average delay of 16 hours before therapy for the hyponatremia was begun, and even when it was initiated, the mean rate of correction was less than 0.7 mmol per liter per hour, a rate that has been defined as constituting "slow" correction. There have been several articles over the past decade advocating such slow correction of hyponatremia.3,7,8,37,45,48 More recently, some evidence has suggested that "overly rapid" therapy of symptomatic hyponatremia may sometimes be associated with central pontine myelinolysis, 7,8,46,48,50,51 a rare neurologic disorder of uncertain origin that is most often found in patients with alcoholism, cachexia, or malnutrition. 52 Although initial studies in laboratory animals have suggested that rapid treatment of hyponatremia could result in central pontine myelinolysis, 46,48 the lesions seen were probably not the result of rapid correction of hyponatremia alone. 2,5,53-55 Studies in both human subjects with hyponatremia^{2,4,5,10,53-55} and rats⁴⁹ have demonstrated that rapid correction of symptomatic hyponatremia (serum sodium level of 95 to 120 mmol per liter) to the level of mild hyponatremia (serum sodium level of 128 to 132 mmol per liter) did not appear to result in central pontine myelinolysis. In fact, in a review of 65 patients with symptomatic hyponatremia4 whose condition was corrected to a serum sodium level of 130 mmol per liter at a rate of about 2 mmol per liter per hour, survival was above 90 percent and central pontine myelinolysis did not develop in any patient. Rather, preliminary studies suggest that overcorrection of plasma sodium to normonatremic or hypernatremic levels may result in demyelinating lesions of the brain. 46,48,49,53 Thus, it appears that increasing the plasma sodium level by about 2 mmol per liter per hour to a level of 128 to 132 mmol per liter is appropriate at our current level of knowledge.

Seven women had an unusual syndrome, shown graphically in Figure 1. These patients were comatose while their serum sodium levels were increased from 105 to 131 mmol per liter over a mean period of 41 hours. Then, 58 hours after awakening from coma to the point of being able to communicate, eat, and walk, all seven patients had grand mal seizures and again became comatose. None recovered from this second episode of coma, which occurred when the serum sodium level was at least 128 mmol per liter. The cause of the recurrent coma is uncertain, and there have been only a few reports in which a similar syndrome has been suggested.^{9,17} Such a syndrome has not been well described in association with hyponatremia, but it has been well described in patients who have had a hypoxic-anoxic episode, 19-21 such as cardiac arrest, carbon monoxide intoxication, or aspiration. Such patients are generally resuscitated quickly and appear to recover, usually within 24 hours. They seem relatively normal for 2 to 10 days, but then a characteristic syndrome occurs. This is characterized by apathy, irritability, and confusion, often with agitation or manic behavior. Motor control gradually deteriorates, and there is a progression to coma. There are no obvious features during the initial anoxic insult that serve to distinguish the patients destined to relapse from those who will have uncomplicated recoveries. The cause of anoxia seems unimportant. As in the present series, many such patients are initially misdiagnosed and are thought to have a primary cerebral disease, such as subdural hematoma. 19-21 In the present series, the diagnosis must be made on clinical grounds, but anoxia appears to be the most likely cause of the recurrent seizures and coma, with either death or a persistent vegetative state as the outcome. The pathogenesis may also be related to a similar syndrome involving brain-stem herniation secondary to a space-occupying cerebral lesion.56,57

In the present study, head CT scans were performed in all the patients, and pathological examination of brain tissue in five (three autopsies and two brain biopsies). No patient had any evidence of central pontine myelinolysis, either histologically or on the CT scan. However, central pontine myelinolysis occurs most often in the central pons, a structure that would not be evaluated in a brain biopsy because of its anatomical location. In addition, special staining for central pontine myelinolysis was carried out in only one patient (Patient 2), who died within 24 hours of seizure activity, too early for myelinolysis to have developed. Thus, central pontine myelinolysis cannot absolutely be ruled out in some of the patients studied. Three patients had gross evidence of brain-stem herniation (uncal grooving and compression), and all three had died within 30 hours. Two of the others had evidence of cerebral cortical atrophy on biopsy or autopsy. However, neither histologic examination of the brain in five patients nor multiple diagnostic studies indicated any evidence of other cerebral disease, such as tumor, stroke, acute bleeding, infection, or subdural hematoma. All 15 patients had CT scans, half had carotid and vertebral angiography, and 60 percent had lumbar punctures. Three of the CT scans revealed brain-stem edema; all the other studies were negative. Thus, the neurologic disability in these patients was not associated with any lesion identifiable either by numerous diagnostic studies or by histologic studies. Preliminary studies, both from our laboratory47 and from others,49 show that brain lesions are generally absent in rabbits, dogs, and rats with symptomatic hyponatremia. In rats and rabbits with chronic hyponatremia (serum sodium level, 95 to 110 mmol per liter) and paralysis, seizure activity, and obtundation, the brains do not have cerebral edema and are histologically normal.2,47,49 Thus, the neurologic lesion associated with chronic hyponatremic encephalopathy is not well defined. Hyponatremia itself may interfere with glial metabolism or affect neurotransmitter release by mechanisms still undefined.4 In addition, hypoxia with postanoxic encephalopathy after respiratory arrest may often have a major role in the pathogenesis of the brain damage. 19-21

We are indebted to Dr. Robert Fishman for his very helpful criticisms and suggestions regarding the neurologic interpretations of the data; to Dr. Hugh Carroll for helpful suggestions on pathophysiology; and to Dr. Vibeke Strand for helpful suggestions about the writing of the manuscript and the interpretation of data.

REFERENCES

- 1. Anderson RJ, Chung H-M, Kluge R, Schrier RW. Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med 1985; 102:164-8.
- Arieff Al, Llach F, Massry SG. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine (Baltimore) 1976; 55:121-9.
- DeFronzo RA, Thier SO. Pathophysiologic approach to hyponatremia. Arch Intern Med 1980; 140:897-902.
- Arieff Al. Effects of water, electrolyte and acid-base disorders on the central nervous system. In: Arieff AI, DeFronzo RA, eds. Fluid, electrolyte and acid-base disorders. New York: Churchill Livingstone, 1985:969-1040.
- Ayus JC, Olivero JJ, Frommer JP. Rapid correction of severe hyponatremia with intravenous hypertonic saline solution. Am J Med 1982; 72:43-8.
- Dubois GD, Arieff AI. Symptomatic hyponatremia: the case for rapid correction. In: Narins RG, ed. Controversies in nephrology and hypertension. New York: Churchill Livingstone, 1984:393-407.

- 7. Norenberg MD. Treatment of hyponatremia: the case for a more cons tive approach. In: Narins RG, ed. Controversies in nephrology and hyper tension. New York: Churchill Livingstone, 1984:377-91.
 Tomlinson BE, Pierides AM, Bradley WG. Central pontine myelin
- two cases with associated electrolyte disturbance. Q J Med 1976; 45:373.
- Zimmermann B, Wangensteen OH. Observations on water intoxication
- surgical patients. Surgery 1952; 31:654-69.
 Ashraf N, Locksley R, Arieff AI. Thiazide-induced hyponatremia associa ed with death or neurologic damage in outpatients. Am J Med 1981 70:1163-8.
- 11. Plum F, Posner JB. Diagnosis of stupor and coma. Philadelphia: FA Davis 1966:151-3
- Posner JB, Ertel NH, Kossmann RJ, Scheinberg LC. Hyponatremia in acus polyneuropathy. Arch Neurol 1967; 17:530-41.
 Anastassiades E, Wilson R, Steward JSW, Perkin GD. Fatal brain oede
- due to accidental water intoxication. Br Med J 1983; 287:1181-2.
- Kennedy PGE, Mitchell DM, Hoffbrand BI. Severe hyponatraemia in hos pital patients. Br Med J 1978; 2:1251-3.
- Baran D, Hutchinson TA. The outcome of hyponatremia in a general hospi tal population. Clin Nephrol 1984; 22:72-6.
- Chung H-M, Kluge R, Schrier RW, Anderson RJ. Postoperative hyponatro mia: a prospective study. Arch Intern Med 1986; 146:333-6.
- Park R, Guisado R, Arieff AI. Nutrient deficiencies in man and ani mals: water. In: CRC handbook of nutrition and food. Section E. Nutri tional disorders. Vol. 2. West Palm Beach, Fla.: CRC Press, 1978:363.
- Wynn V, Rob CG. Water intoxication: differential diagnosis of the hypotonic syndromes. Lancet 1954; 1:587-94.
- Plum F, Posner JB, Hain RF. Delayed neurological deterioration after an oxia. Arch Intern Med 1962; 110:18-25.
- Jennett B, Plum F. Persistent vegetative state after brain damage: a syndrome in search of a name. Lancet 1972; 1:734-7.
- Ginsberg MD. Delayed neurological deterioration following hypoxia. Adv Neurol 1979; 26:21-44.
- Scott JC Jr, Welch JS, Berman IB. Water intoxication and sodium depletion in surgical patients. Obstet Gynecol 1965; 26:168-75.
- Moses AM, Blumenthal SA, Streeten DHP. Drugs and water metabolism In: Arieff AI, DeFronzo RA, eds. Fluid, electrolyte and acid-base disorders. New York: Churchill Livingstone, 1985:1145-58.
- de Bodo RC, Prescott KF. The antidiuretic action of barbiturates (phenobar bital, amytal, pentobarbital) and the mechanism involved in this action J Pharmacol Exp Ther 1945; 85:222-33.
- Sheeler LR, Schumacher OP. Hyponatremia during ACTH infusions. Ann Intern Med 1979; 90:798-9
- Whalley PJ, Pritchard JA. Oxytocin and water intoxication. JAMA 1963;
- Barlow ED, De Wardener HE. Compulsive water drinking. Q J Med 1959; 28:235-58
- Edelman IS, Leibman J, O'Meara MP, Birkenfeld LW. Interrelations be tween serum sodium concentration, serum osmolarity and total exchange able sodium, total exchangeable potassium and total body water. J Clin Invest 1958; 37:1236-56.
- Shires T, Williams J, Brown F. Acute change in extracellular fluids associated with major surgical procedures. Ann Surg 1961; 154:803-10.
- Moran WH Jr, Miltenberger FW, Schuayb WA, Zimmermann B. The rela tionship of antidiuretic hormone secretion to surgical stress. Surgery 1964;
- Deutsch S, Goldberg M, Dripps RD. Postoperative hyponatremia with the inappropriate release of antidiuretic hormone. Anesthesiology 1966;
- Ting S, Eshaghpour E. Inappropriate secretion of antidiuretic hormone after open heart surgery. Am J Dis Child 1980; 134:873-4.
- Burrows FA, Shutack JG, Crone RK. Inappropriate secretion of antidiureti hormone in a postsurgical pediatric population. Crit Care Med 1983;
- Helwig FC, Schutz CB, Curry DE. Water intoxication: report of a fatal human case, with clinical, pathologic and experimental studies. JAMA 1935: 104:1569-75
- Bartholomew LG, Scholz DA. Reversible postoperative neurological symp toms: report of five cases secondary to water intoxication and sodium depletion. JAMA 1956; 162:22-6.
- Al-Mufti HI, Arieff Al. Captopril-induced hyponatremia with irreversible neurological damage. Am J Med 1985; 79:769-71.
- Norenberg MD, Leslie KO, Robertson AS. Association between rise in serum sodium and central pontine myelinolysis. Ann Neurol 1982; 11:128-35.
- Rendell M, McGrane D, Cuesta M. Fatal compulsive water drinking. JAMA 1978; 240:2557-9.
- Lawrence SV. Woman's death by water intoxication ruled suicide. Clin Psychiatry News 1977; 5:3.

₽. Hoffr cotra

vol. 314

2513 Brad 41. Proc Grin

cyte 246 LaB gest ATP

- Lask I C
- Flea 45 198
- Kle 46 nati
- Scie Du
- hyp

OSM

Abst

sial: 5 caus(sever corre perio with (tine r sente wors (>12 that Five

> link fata mye argi thre per pro ous

> > "te eig

ma

Ger ter.

es in nephrology and hyper.

June#12, 1986

ntral pontine myelinolysia e. Q J Med 1976; 45:373.

ns on water intoxication in

ced hyponatremia associatatients. Am J Med 1981:

a. Philadelphia: FA Davis

LC. Hyponatremia in acute

in GD. Fatal brain oedema 1983; 287:1181-2. vere hyponatraemia in hos.

natremia in a general hospi

J. Postoperative hyponatre 6; 146:333-6. ciencies in man and an

nd food. Section E. Nutrila.: CRC Press, 1978:363

tial diagnosis of the hypo-

after brain damage: a sys

on following hypoxia. Adv

ugs and water metabolism te and acid-base disorders.

n of barbiturates (phenobar m involved in this action

ring ACTH infusions, Am

intoxication. JAMA 1963;

er drinking. Q J Med 1959,

ield LW. Interrelations be olarity and total exchange d total body water. I Clin

extracellular fluids associ-1961; 154:803-10. Zimmermann B. The relargical stress. Surgery 1964

tive hyponatremia with the

f antidiuretic hormone after 873-4.

ate secretion of antidiurete on. Crit Care Med 1983.

oxication: report of a fatal perimental studies. JAMA

perative neurological sympoxication and sodium deple

onatremia with irreversible 1-71.

Ann Neurol 1982; 11:128

ompulsive water drinking

cication ruled suicide. Co

- 40. Hoffman EK. Role of separate K* and Cl⁻ channels and of Na*/Cl⁻ cotransport in volume regulation in Ehrlich cells. Fed Proc 1985; 44: 2513-9.
- Bradbury MWB. The structure and function of the blood-brain barrier. Fed Proc 1984; 43:186-90.
- Grinstein SA, Rothsteim A, Sarkadi B, Gelfand EW. Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol 1984; 246:C204-C215.
- LaBella FS, Bihler I, Templeton J, Kim R-S, Hnatowich M, Rohrer D. Progesterone derivatives that bind to the digitalis receptor: effects on Na⁺.K⁺. ATPase and isolated tissues. Fed Proc 1985; 44:2806-11.
- Lasker N, Hopp L, Grossman S, Bamforth R, Aviv A. Race and sex differences in erythrocyte Na⁺, K⁺, and Na⁺-K⁺-adenosine triphosphatase.
 J Clin Invest 1985; 75:1813-20.
- Flear CT, Gill GV. Hyponatraemia: mechanisms and management. Lancet 1981; 2:26-31.
- Kleinschmidt-DeMasters BK, Norenberg MD. Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science 1981; 211:1068-70.
- Dubois GD, Leach W, Arieff AI. Central pontine myelinolysis (CPM) and hyponatremia. Clin Res 1983; 31:98A. abstract.
- Laureno R. Central pontine myelinolysis following rapid correction of hyponatremia. Ann Neurol 1983; 13:232-42.

- Ayus JC, Krothapalli RK, Armstrong DL. Rapid correction of severe hyponatremia in the rat: histopathological changes in the brain. Am J Physiol 1985; 248:F711-F719.
- Burcar PJ, Norenberg MD, Yarnell PR. Hyponatremia and central pontine myelinolysis. Neurology (NY) 1977; 27:223-6.
- Messert B, Orrison WW, Hawkins MJ, Quaglieri CE. Central pontine myelinolysis: considerations on etiology, diagnosis, and treatment. Neurology (NY) 1979; 29:147-60.
- Adams RD, Victor M, Mancall EL. Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. Arch Neurol Psychiatry 1959; 81:154-72.
- Decaux G, Unger J, Brimioulle S, Mockel J. Hyponatremia in the syndrome of inappropriate secretion of antidiuretic hormone: rapid correction with urea, sodium chloride, and water restriction therapy. JAMA 1982; 247:471-4.
- Ashouri OS. Diuretic induced severe hyponatremia in the elderly: a series of eight patients. Arch Intern Med (in press).
- Ayus JC, Krothapalli R, Arieff AI, Frommer JP. Overcorrection rather than rapid correction induces central pontine myelinolysis (CPM) in patients with severe hyponatremia (SHN). Kidney Int 1985; 27:132. abstract.
- Plum F, Posner JB. Diagnosis of stupor and coma. Philadelphia: FA Davis, 1966:52-4.
- Fisher CM. Acute brain herniation: a revised concept. Semin Neurol 1984; 4:417-21.

OSMOTIC DEMYELINATION SYNDROME FOLLOWING CORRECTION OF HYPONATREMIA

RICHARD H. STERNS, M.D., JACK E. RIGGS, M.D., AND SYDNEY S. SCHOCHET, JR., M.D.

Abstract The treatment of hyponatremia is controversial: some authorities have cautioned that rapid correction causes central pontine myelinolysis, and others warn that severe hyponatremia has a high mortality rate unless it is corrected rapidly. Eight patients treated over a five-year period at our two institutions had a neurologic syndrome with clinical or pathological findings typical of central pontine myelinolysis, which developed after the patients presented with severe hyponatremia. Each patient's condition worsened after relatively rapid correction of hyponatremia (>12 mmol of sodium per liter per day) — a phenomenon that we have called the osmotic demyelination syndrome. Five of the patients were treated at one hospital, and ac-

RECENTLY, the treatment of hyponatremia has become controversial. Some investigators have linked rapid correction of hyponatremia with an often fatal neurologic disorder known as central pontine myelinolysis. 1-9 Others have disputed this association, arguing that symptomatic hyponatremia is a life-threatening emergency that can result in death or permanent neurologic damage unless it is treated promptly and vigorously. 10-15 The clinician faced with a hyponatremic patient has thus been placed in a serious quandary. Allegedly, morbidity and mortality may result from treatment that is either "too fast" or "too slow."

Within the past five years we have encountered eight patients at our two institutions who have had serious neurologic complications from hyponatremia.

From the Departments of Medicine, Neurology, and Pathology, Rochester General Hospital, and the University of Rochester School of Medicine, Rochester, N.Y.; and West Virginia University School of Medicine, Morgantown, W.V. Address reprint requests to Dr. Sterns at Rochester General Hospital, 1425 Portland Ave., Rochester NY 14621.

counted for all the neurologic complications recorded among 60 patients with serum sodium concentrations below 116 mmol per liter; no patient in whom the sodium level was raised by less than 12 mmol per liter per day had any neurologic sequelae. Reviewing published reports on patients with very severe hyponatremia (serum sodium <106 mmol per liter) revealed that neurologic sequelae were associated with correction of hyponatremia by more than 12 mmol per liter per day; when correction proceeded more slowly, patients had uneventful recoveries. We suggest that the osmotic demyelination syndrome is a preventable complication of overly rapid correction of chronic hyponatremia. (N Engl J Med 1986; 314:1535-42.)

Their presenting symptoms were severe enough to cause them to seek medical attention, but tragically, their condition worsened as their electrolyte disturbances were corrected. Each patient had similar neurologic findings, which we have termed the osmotic demyelination syndrome. We believe that this syndrome is an avoidable complication of overly rapid therapy.

METHODS

During a 12-month period at West Virginia University Medical Center, a tertiary referral center serving a population of 600,000, three patients who did not have alcoholism and who were seen in neurologic consultation by one of us (J.E.R.) were thought to have central pontine myelinolysis. Laboratory data (with imprecise information regarding the exact timing of blood sampling) were obtained from the referring hospitals.

At the Rochester General Hospital, a 547-bed university-affiliated community hospital, the charts of adult patients in whom hyponatremia had been diagnosed during a five-year period were reviewed to identify patients with serum sodium concentrations of less than 116 mmol per liter. Of 60 patients with 62 episodes of hyponatremia, 5 were found to have had neurologic sequelae. One of us (R.H.S.) was personally familiar with the course of four of these five patients; data on the fifth patient were extracted from the